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IMPORTANCE Although early signs of autism are often observed between 18
and 36 months of age, there is considerable uncertainty regarding future development.
Clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring
intellectual disability (ID).

OBJECTIVE To predict ID in children diagnosed with autism.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study involved the development and
validation of models integrating genetic variants and developmental milestones to predict ID.
Models were trained, cross-validated, and tested for generalizability across 3 autism cohorts:
Simons Foundation Powering Autism Research (SPARK), Simons Simplex Collection,
and MSSNG. Autistic participants were assessed older than 6 years of age for ID.
Study data were analyzed from January 2023 to July 2024.

EXPOSURES Ages at attaining early developmental milestones, occurrence of language
regression, polygenic scores for cognitive ability and autism, rare copy number variants,
de novo loss-of-function and missense variants impacting constrained genes.

MAIN OUTCOMES AND MEASURES The out-of-sample performance of predictive models
was assessed using the area under the receiver operating characteristic curve (AUROC),
positive predictive values (PPVs), and negative predictive values (NPVs).

RESULTS A total of 5633 autistic participants (4574 male [81.2%]) were included in this
analysis. On average, participants were diagnosed with autism at 4 (IQR, 3-7) years of age and
assessed for ID at 11 (8-14) years of age, with 1159 participants (20.6%) being diagnosed with
ID. The model integrating all predictors yielded an AUROC of 0.653 (95% CI, 0.625-0.681),
and this predictive performance was cross-validated and generalized across cohorts.
This modest performance reflected that only a subset of individuals carried large-effect
variants, high polygenic scores, or presented delayed milestones. However, combinations of
genetic variants that are typically not considered clinically relevant by diagnostic laboratories
achieved PPVs of 55% and correctly identified 10% of individuals developing ID. The addition
of polygenic scores to developmental milestones specifically improved NPVs rather than
PPVs. Notably, the ability to stratify ID probabilities using genetic variants was up to 2-fold
higher in individuals with delayed milestones compared with those with typical development.

CONCLUSIONS AND RELEVANCE Results of this prognostic study suggest that the growing
number of neurodevelopmental condition–associated variants cannot, in most cases,
be used alone for predicting ID. However, models combining different classes of variants
with developmental milestones provide clinically relevant individual-level predictions that
could be useful for targeting early interventions.
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P arents of children diagnosed w ith autism in
early childhood invariably question their child’s
future cognitive and adaptive development: will they

be able to communicate, interact socially, and live
independently?1

Early signs of autism, including differences in social
communication and repetitive or restricted behavior, often
manifest around 18 months of age.2,3 These first concerns
may be accompanied by delays in language development,
and in a more limited proportion of individuals, by delays
in motor milestones.4 Diagnoses of autism made at 18 to 36
months are stable in most cases,5-7 yet significant uncer-
tainty remains regarding future development.8 Autistic
individuals can later display a broad diversity of strengths9

and disabilities, which might not directly correspond
to their early developmental presentation.10 This is
exemplified by intellectual disability (ID), a clinical diag-
nosis characterized by impairments in both cognitive
abil ity and adaptive functioning, which occ urs in
approximately 10% to 40% of autistic individuals11,12 and
can only be diagnosed with relative certainty after age 6
years.13-16

Interventions have been reported to benefit some autis-
tic individuals,8,17 guided by general principles of maximiz-
ing potential, minimizing barriers, and optimizing the
person-environment fit.18 However, the current wait-and-
see approach19 often overlooks a child’s specific strengths
and challenges until there is a significant mismatch20,21

between the individual’s abilities, the environmental
demands, and the provided support,18 which may result in
higher levels of stress, school failure, and social misunder-
standings. As such, anticipating cognitive and adaptive pro-
files may be key to determining what specific interventions
are best offered, to whom, when, and at what intensity.22

Recent genetic research suggests a potential for poly-
genic scores (PGS) and rare genetic variants—including
copy number variants (CNVs; deletions or duplications)
and single nucleotide gene-disrupting variants—as predic-
tors of cognitive and adaptive profi les in autistic
individuals.23-25 However, even strong statistical associa-
tions derived from group-level comparisons do not necessar-
ily translate into clinically relevant individual-level
predictions.26 Currently, clinicians attempt to intuitively
integrate genetic findings with the surveillance of develop-
mental milestones8 but thus far without the assistance from
any predictive models, as are increasingly used in other
medical fields.27-31

Here, we aimed to develop and validate models integrat-
ing genetic variants and early developmental milestones
to predict the probability of developing ID in toddlers and
young children receiving a diagnosis of autism.

We asked the following: (1) Does combining dif-
ferent classes of genetic variants improve ID prediction?
(2) Does the integration of genetic variants with develop-
mental milestones outperform milestones alone? (3)
What are the cognitive and adaptive dimensions more pre-
cisely predicted by genetic variants and developmental
milestones?

Methods

Ethics and Reporting Standards
This study was approved by the CHU Sainte-Justine Research
Centre institutional review board. All participants provided
written informed consent. This study adhered to the Trans-
parent Reporting of a Multivariable Prediction Model for In-
dividual Prognosis or Diagnosis (TRIPOD) reporting
guidelines32 and the Polygenic Risk Score Reporting Standards
(PRS-RS).33

Sample Selection
We included participants from 3 cohorts: the Simons
Foundation Powering Autism Research (SPARK)34 version
WES1-2-3, Simons Simplex Collection (SSC),35 and MSSNG.36

Inclusion criteria were as follows: a professional diagnosis of
autism spectrum disorder according to Diagnostic and Statis-
tical Manual of Mental Disorders Fifth Edition, Text Revision,
or corresponding categories from previous editions, based
on a caregiver report or self-report; genetic data from the
proband and both parents meeting quality control; geneti-
cally inferred European ancestry; documented information
on ID; and age at least 6 years for greater stability of this
assessment.37 Analyses of developmental milestones were
done in the subset of individuals for whom all milestones
were available.

Outcome
In the SPARK cohort, ID was determined based on a caregiver
report of a professional diagnosis (eMethods in Supple-
ment 1). We validated that cognitive and adaptive measures,
where available from medical records, were strong predic-
tors of this report (eTable 1 in Supplement 2). In the SSC and
MSSNG cohorts, ID was inferred from nonverbal IQ data
using a threshold below 70.38 In a subsample of the SSC co-
hort where data were consistently available, we conducted
a secondary analysis on the subscales from the IQ and the
Vineland Adaptive Behavior Scales.39

Key Points
Question What is the predictive performance of combining
genetic variants and developmental milestones to predict
intellectual disability (ID) in autistic children?

Findings In this prognostic study including 5633 autistic
participants, a model combining 5 classes of genetic variants and
early developmental milestones yielded an area under the receiver
operating characteristic curve of 0.65, with this predictive
performance cross-validated and generalized across cohorts.
The model yielded positive predictive values of 55%, accurately
identifying 10% of ID cases; the ability to stratify ID probabilities using
genetic variants was up to 2-fold higher in individuals with delayed
milestones compared with those with typical development.

Meaning Results suggest that models that integrate genetic and
developmental information could be implemented in clinical
settings to help anticipate developmental trajectories in autism
and target early interventions.
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Genetic and Developmental Predictors
The complete procedure for calling and processing
genetic variants is detailed in the eMethods in Supplement 1.
Briefly, using feature selection algorithms, we re-
tained PGS for cognitive ability40 and autism41 as the
combination most predictive of ID in the training cohort,
among 12 PGS (eTable 2 in Supplement 2), previously
selected41 from 234 genome-wide association study
summary statistics tested for their genetic correlation
with autism.41

Across 4 classes of rare variants (deletions, duplications,
de novo loss of function [LOF] and de novo missense vari-
ants), we used a gene-based scoring strategy, assigning
scores to each individual based on the count of rare variants,
within each class, affecting constrained genes. Con-
strained genes are relatively intolerant to variation, and
therefore, pathogenic variants in these genes are more
likely to have deleterious effects on development; these
were defined with LOF observed/expected upper bound
fraction (LOEUF) less than 0.35,42-44 which represents
2971 genes, genome-wide. In addition, we evaluated a
smaller set of 285 genes,45 potentially more specifically
associated with developmental disorders (DDs). Develop-
mental milestones (motor, language and toileting)
were assessed based on retrospective reports by caregivers.

Framework for Model Training and Evaluation
To determine the individual and cumulative predictive
contributions of genetic and developmental variables,
we used multiple logistic regression, sequentially adding
variables in a predetermined order (eMethods in Supple-
ment 1). Using 10-fold cross-validation in the SPARK
cohort, we systematically trained the models and as-
sessed their predictive performance on unseen data.
B y ave r a g i ng t h e p e r f o r m a n c e m e t r i c s a c r o s s a l l
folds, this method46 provides robust estimates, more
reflective of the out-of-sample predictive performance.47

Finally, we tested out-of-sample prediction of the
models trained on the complete SPARK sample to
generalize on the SSC and MSSNG samples. Metrics
for assessing the models’ performance are described
in eAppendix in Supplement 1: the areas under the
receiver operating characteristic (AUROC) curve,48 as well as
positive predictive value (PPV)–sensitivity28 and negative
predictive value (NPV)–specificity curves.

Statistical Analysis
CIs on performance metrics were computed using bootstrap
methods with 10 000 iterations. In addition, the statistical
signific ance of improvement in performance when
adding new predictors to the model was assessed using
the likelihood-ratio test.49 P values were adjusted for mul-
tiple comparisons using the Benjamini-Yekutieli method
(statistical significance 2-sided P < .05). Analyses were con-
ducted with RStudio, version 4.3.2 (Posit PBC), and
Scikit-Learn50 with Python, version 3.11.6 (Python Software
Foundation). Study data were analyzed from January 2023
to July 2024.

Results

Descriptive Statistics of the Cohorts
A total of 5633 autistic individuals (median [IQR] age,
11 [8-14] years; 1059 female [18.8%]; 4574 male [81.2%]) were
included across the 3 cohorts (Figure 1), and their character-
istics are detailed in the Table.42,45,51,52 Participants were
diagnosed with autism at a median age of 4 years, even though
their parents reported concerns starting from 18 months
of age. ID occurred in 13.7% to 22.0% of individuals,
depending on the sample, and was assessed or reported
at a median age of 10 to 11 years.

Predictive Value of Combining Different Classes
of Genetic Variants
Evaluating Genetic Variants With AUROC Curve Analysis
We first investigated if genetic variants alone could predict ID
among autistic individuals (Figure 2A). In the training cohort
(SPARK), all genetic models were statistically significant (like-
lihood ratio test, P = 1.1 × 10−17 for the model including all
classes of variants) and we observed an increase in cross-
validated predictive performance measured with the AUROC
with sequentially incorporating the different classes of com-
mon and rare genetic variants into the model, all of which were
significant, with P = .02 for deletions and duplications (P = .02
when including DD genes) and P = 1.4 × 10−10 for LOF and
missense variants (P = 8.9 × 10−15 when including DD genes).

The predictive performance of the model combining
cognitive ability PGS and autism PGS (both negatively corre-
lated with ID) resulted in an AUROC of 0.529 (95% CI, 0.512-
0.545). With the inclusion of constrained and DD gene dele-
tions and duplications, this was 0.532 (95% CI, 0.515-0.548),
and when also incorporating de novo LOF and missense
variants, this was 0.565 (95% CI, 0.545-0.586).

Generalization to Different Cohorts
We tested whether the model’s predictive performance was
generalizable to other cohorts with different ascertainment
(Figure 2A and eTable 3 in Supplement 2). The model trained
on SPARK was validated out-of-sample in SSC and MSSNG.
The model’s performance was robust to resampling in SSC
(AUROC, 0.562; 95% CI, 0.524-0.599; likelihood-ratio test
P = 1.2 × 10−6) but not in the smaller MSSNG dataset
(AUC, 0.533; 95% CI, 0.465-0.602; likelihood-ratio test P = .41).

Examining Model Predictions
We examined the probability estimates (Figure 2B) obtained
from combining PGS for cognitive ability with rare genetic vari-
ants of different classes. Most carriers had only 1 gene im-
pacted by LOF (97.9% [285 of 291] of carriers) or missense
(99.2% [122 of 123]) variants. In contrast, CNVs are often mul-
tigenic: 36.3% of carriers (49 of 135) of deletions and 41.5% of
carriers (81 of 195) of duplications had variants involving more
than 1 constrained gene (SPARK data). Considering the addi-
tive effects of these variants,23,53,54 we estimated that a dele-
tion or duplication impacting 3 or 4 constrained genes respec-
tively, combined with a top-decile PGS, confers a similar
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probability of intellectual disability (approximately 34%) as a
LOF variant with a bottom-decile PGS. In individuals with a
higher probability due to a de novo LOF variant, the top and
bottom decile PGS were associated with predicted probabili-
ties of ID of less than 34.0% and greater than 43.0%, respec-
tively, as compared with less than 17.1% and greater than
23.2% in those without any rare variant. In other words,
combining rare and common variants improved discrimina-
tion between low vs high probabilities of ID.

Evaluating PPVs and NPVs
To evaluate the clinical relevance of this model, we exam-
ined trade-offs between PPVs and sensitivity, as well as be-
tween NPVs and specificity (eAppendix in Supplement 1),
across the full range of combinations of genetic variants
(Figure 2C and D).

We observed that the addition of each class of variant into
the model (Figure 2C) consistently improved PPVs. Certain
combinations of variants reached a PPV of 46.8%. In other
words, 46.8% of the individuals predicted to have ID by the
model had a diagnosis of ID (2-fold increase compared with
the baseline prevalence of 20.8%). Such high-liability combi-
nations of variants occurred in a small proportion of individu-
als, thus correctly identifying 10% (sensitivity) of individuals
who will develop ID. Conversely, this curve illustrates that the
integration of all genetic variants also increases the number
of identified children among all those having ID (ie, sensitiv-
ity) from 6% when using only polygenic scores to 30% when

incorporating all variants, while maintaining a stable PPV
of approximately 30%.

Gains in NPVs (Figure 2D) were more modest. The NPVs
reached 86.0%, as observed at the lowest 10% of specificity,
compared with the 79.2% baseline prevalence of not having
ID. This suggests that genetic variants, when used in isola-
tion, are more effective at predicting the presence of ID
(Figure 2C) than excluding it (Figure 2D).

Many variants (with mild to moderate effect sizes) inte-
grated in our model would either not be reported by most di-
agnostic laboratories or be reported as variants of unknown
significance. Therefore, we compared our model’s PPVs with
that of variants that would currently be reported to clinicians
as pathogenic by diagnostic laboratories. The carrier status of
deletions or de novo LOF variants disrupting DD-associated
genes45 had a PPV of 49.8%, similar to that of the model inte-
grating all classes of variants, albeit with a 3-fold smaller
sensitivity (3.3%) (eTable 4 in Supplement 2). This indicates
that models integrating different classes of genetic variants
achieve PPVs similar to those of currently reported patho-
genic variants in a 3-fold larger group of individuals (ie, im-
proved sensitivity).

Sensitivity Analyses
The eMethods in Supplement 1 showed that the model’s pre-
dictive performance was not influenced by environmental fac-
tors (ie, removing individuals with prenatal exposure to alco-
hol or drugs, oxygen supplementation at birth, intraventricular

Figure 1. Schematic Overview of the Study

Study rationaleA
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Study flowchartB
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A, Study rationale. There is often a long period of uncertainty between
parents’ initial concerns, an autism diagnosis, and the identification of
co-occurring intellectual disability (ID) in 10% to 40% of autistic children.
Genetic testing is frequently conducted at or before the diagnosis of autism.
Therefore, predictive models that integrate genetic testing results with
developmental milestones could help clinicians provide parents with accurate
information about their child’s expected developmental trajectory such as

to offer the child appropriate support. B, Study flowchart. We trained models
to predict ID in the Simons Foundation Powering Autism Research (SPARK)
cohort, estimating their out-of-sample predictive performance using
cross-validation. Additionally, we evaluated the generalizability of these
models in the Simons Simplex Collection (SSC) and MSSNG cohorts.
AUROC indicates area under the receiver operating characteristic curve.
aIndividuals with complete milestones data.
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hemorrhage, meningitis, or encephalitis) (eTable 5 in Supple-
ment 2), verbal abilities (ie, removing nonspeaking individu-
als) (eTable 5 in Supplement 2), changing predictive algo-
rithm (random forest vs logistic regression) (eTable 6 in
Supplement 2), or telescoping effects55 on milestones report-
ing (eTable 7 in Supplement 2).

Integrating Genetic Variants and Developmental
Milestones to Predict Outcome
When a child is referred for atypical development, clinicians
commonly take into account developmental history to assess
the probability of developing ID, based on normative data

and their clinical experience. We aimed to evaluate the pre-
dictive informativeness of genetic test results on the back-
ground of this clinical information.

First, we tested the predictive value of developmental
history, by sequentially including in a model the age of attain-
ing 5 milestones, as well as the presence of language regres-
sion, in the order these typically occur (Figure 3A, right
panel).52 As expected, the predictive performance increased
as we added developmental milestones that are achieved
at older ages, closer to the diagnosis of ID.

Then, we assessed the added predictive value of
genetics (Figure 3A, left panel) at each developmental

Table. Participant Characteristicsa

Characteristic

Cohort used for training
and cross-validation,
SPARK (n = 4085)

Cohorts used for generalization

SSC (n = 1183) MSSNG (n = 365)

Profile of participants

Sex, No. (%)

Female 825 (20.2) 152 (12.8) 82 (22.5)

Male 3260 (79.8) 1031 (87.2) 283 (77.5)

Age at parents’ first concern,
median (IQR), mo

18.0 (12.0-30.0) 18.0 (14.0-30.0) 18.0 (12.0-30.0)

Age at diagnosis of autism, median (IQR), y 4.25 (2.83-7.00) NA NA

Age at ID assessment, median (IQR), y 11.3 (8.42-14.9) 9.67 (7.92-12.8) 10.1 (8.21-12.9)

Outcome

Diagnosis of ID, No. (%) 849 (20.8) 260 (22.0) 50 (13.7)

Developmental predictors, median (IQR)

Age at independent walking
(general population 90th percentile: 18 mo)

13.0 (12.0-15.0) 12.0 (11.0-15.0) 13.0 (12.0-16.0)

Delayed, No. (%) 515 (16.7) 122 (10.4) 47 (16.8)

Age at first word (general population
90th percentile: 15 mo)

14.0 (11.0-24.0) 18.0 (12.0-30.0) 18.0 (12.0-36.0)

Delayed, No. (%) 1429 (48.6) 737 (65.4) 178 (66.9)

Age at first phrase (general population
90th percentile: 24 mo)

24.0 (18.0-42.0) 36.0 (24.0-48.0) 36.0 (24.0-48.0)

Delayed, No. (%) 1703 (60.3) 843 (78.5) 192 (77.4)

Language regression (occurs on average
at 21.8 mo in autism), No. (%)51

710 (22.7) 181 (15.4) 47 (16.6)

Bladder control, mo 42.0 (36.0-54.0) 43.0 (36.0-54.0) 45.5 (36.0-54.0)

Bowel control, mo 48.0 (36.0-60.0) 48.0 (37.0-60.0) 48.0 (36.0-60.0)

Carriers of genetic variants, No. (%)

Deletions

Impacting constrained genes 135 (3.3) 27 (2.3) 4 (1.1)

Impacting DD genes 32 (0.8) 5 (0.4) 2 (0.5)

Duplications

Impacting constrained genes 195 (4.8) 52 (4.4) 17 (4.7)

Impacting DD genes 27 (0.7) 7 (0.6) 4 (1.1)

De novo missense variants with MPC ≥2

Impacting constrained genes 127 (3.0) 48 (4.1) 12 (3.3)

Impacting DD genes 63 (1.5) 25 (2.1) 6 (1.6)

De novo LOF variants

Impacting constrained genes 291 (7.1) 135 (11.4) 27 (7.4)

Impacting DD genes 137 (3.4) 46 (3.9) 9 (2.5)

Any of the aforementioned variants

Impacting constrained genes 707 (17.3) 244 (20.6) 59 (16.2)

Impacting DD genes 254 (6.2) 82 (6.9) 21 (5.8)

Abbreviations: DD, developmental
disorder; ID, intellectual disability;
LOF, loss of function; MPC, missense
polyphen constraint; NA, not
assessed; SPARK, Simons Foundation
Powering Autism Research;
SSC, Simons Simplex Collection.
a Autistic individuals were included

from 3 distinct cohorts: SPARK, SSC,
and MSSNG. For each milestone, we
present the median (IQR) and the
percentage delayed as compared
with the 90th general population
percentile. Constrained genes
(2971 genes genome wide) are
intolerant to gene variants and,
therefore, pathogenic variants in
these genes likely to have
deleterious effects on
development.42 DD genes
represent a smaller set of genes
(285 genes genome wide)
previously associated with severe
developmental disorders.45

Delayed milestones were defined
based on the 90th general
population percentile.52
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stage, compared with milestones alone. The added predic-
tive value of genetic variants was contingent on the
performance of milestones, such that it decreased when

milestones occurring at an older age were included in the
model, suggesting that genetic variants contribute more
prediction early in development when fewer milestones

Figure 2. Genetic Analyses to Predict Intellectual Disability (ID) in Autistic Individuals
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Figure 3. Combining Genetic Variants and Developmental Milestones to Predict Intellectual Disability (ID) in Autistic Individuals
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have been achieved and less cumulative developmental
information is available. We then focused on a model inte-
grating the ages of walking and first words as these mile-
stones are typically observed at the time of referral for
autism assessment. The predictive performance was
AUROC = 0.637 (95% CI, 0.608-0.667). The sequential
additions of polygenic scores, copy number variants, and de
novo coding variants into the model were respectively
associated with increments in AUROC of 0.008 (likelihood-
ratio test, P = 1.0 × 10−3), 0.013 (P = 1.6 × 10−5), and 0.016
(P = 9.3 × 10−3). This complete model had an AUROC of
0.653 (95% CI, 0.625-0.681).

Evaluating PPVs and NPVs
To understand the strengths and limitations of this
model for clinical predictions, we examined PPVs and
NPVs across combinations of genetic and developmental
trajectories (Figures 3B and C). We expected that incor-
porating genetic information alongside developmental
milestones would primarily improve PPVs, as clinicians
generally consider the carrier status of a genetic variant
more clinically significant than its absence. However, we
observed that the addition of PGS to developmental
milestones improved NPVs (Figure 3C). Certain combina-
tions of variants (or their absence) and milestones reached
a NPV of 89%.

Stratification of Probability Estimates
We aimed to assess predictive accuracy in clinical situations
where children are referred for specific concerns. We, there-
fore, computed probability estimates within 4 groups that

represent common reasons for referral to developmental
clinics, such as delayed (>90th percentile) motor or language
milestones or language regression.52

The observed frequencies of ID for each group were
concordant with the probabilities of ID predicted by the model
(Figure 2D). The stratification between low vs high probabili-
ties provided by genetic variants was increased 2-fold in in-
dividuals with significant developmental delays (probabili-
ties ranging from 16.7%-47.1%) compared with those without
such delays (7.1%-22.1%).

Out-of-Sample Generalization
The predictive performances provided by the combination of
developmental milestones and genetic variants were
generalized to SSC (AUROC = 0.739; 95% CI, 0.694-0.784)
and MSSNG (0.726; 95% CI, 0.639-0.813) (eTable 6 in Supple-
ment 2).

Differential Prediction of Cognitive and Adaptive Dimensions
The diverse adaptive and cognitive profiles of autistic indi-
viduals are more complex than the category of ID. Indeed,
consistent with previous reports,56,57 we observed a nonlin-
ear relationship between IQ and Vineland adaptive scales
(eMethods in Supplement 1), which highlighted that a pro-
portion of autistic individuals with typical-range IQ (>70)
had greater impairment in adaptive functioning than would
be expected based on their IQ.

Therefore, we asked whether genetic variants and early
milestones were more predictive of some defining features of
ID rather than others: verbal and nonverbal IQ, as well as the
4 Vineland subscales of adaptive functioning (Figure 4 and

Figure 4. Differential Prediction of Adaptive and Cognitive Dimensions Using Genetic Variants and Developmental Milestones
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eTable 8 in Supplement 2). We evaluated this in a subset of
autistic individuals from the SSC sample. Significant mile-
stones explained on average 4-fold more variance than
genetics, with on average 4.8% of variance explained by mile-
stones vs 1.1% for the genomic variants assessed in this study
(including significant effects only). All classes of rare and
common variants, as well as age of walking, were more pre-
dictive of nonverbal IQ, which is often difficult to assess in
autistic individuals.38

Discussion
Leveraging the broad spectrum of combinations of genetic
variants and developmental milestones observed in autistic in-
dividuals, we developed models that provide PPVs of up
to 55%, accurately identifying 10% of individuals who will de-
velop ID. Although the addition of genetic variants to devel-
opmental milestones especially improved the identification
of individuals who will not develop ID (NPVs), the ability to
stratify the probabilities of ID using genetic variants was 2-fold
greater in individuals with delayed milestones compared
with those with typical development.

Our approach builds on previous studies showing that
the effects of rare variants are modulated by an individual’s
genetic background of common variants.23,53,58,59 This was
previously shown in the 22q11.2 deletion, where the predic-
tive power of PGS for ID was higher in carriers (due to an
elevated baseline prevalence) compared with the general
population.53 Here, we extended this approach to all autistic
individuals. The inclusion of multiple combinations of rare
a n d c o m m o n v a r i a n t s —w i t h o u t a n y p h e n o t y p i c
information—resulted in a relative 2-fold increased probabil-
ity, PPVs of 46.8% compared with a baseline probability
of 20.8%.

Probability prediction in other medical fields such as
cardiovascular health relies on quantitative tools that inte-
grate multiple variables, each contributing modestly but
collectively achieving clinically significant predictions.60

Next steps to improve predictive performances of neurode-
velopmental outcomes will similarly require the integration
of iterative assessments, comprehensive developmental
scales,13 familial and environmental factors, as well as a
saturated map of all genetic variants—each contributing
incrementally to predictive performance. Although the
heritability of ID related to additive and transmitted
variants61 is high, a considerable portion of genetic variants
contributing to ID remains unidentified. Current polygenic
scores explain approximately 5% of variance in general
cognitive ability,62 which is low compared with other traits
(with similar heritability) such as height where association
studies have reached saturation and provide PGS explaining
up to 40% of variance.63 Improved knowledge of rare,
common, as well as lesser known intermediate-frequency
genetic variants involved in neurodevelopmental condi-
tions, along with association studies performed across
diverse ancestries, is expected to increase the predictive
power of such models.

The pleiotropy of genetic variants, influencing multiple
developmental phenotypes, such as autism, ID,64 as well as
developmental milestones,23 may represent an opportunity
to improve predictive models by using developmental
milestones as proxies for currently unmeasured genomic
liabilities (eg, unidentified gene-disrupting variants may be
present in children with significantly delayed milestones).
Conversely, we showed that genetic variants bring additional
predictive information (albeit modest) compared with
milestones alone. Although genetic variants alone led
to greater gains in PPVs (Figure 2C), incorporating genetic
data, particularly PGS, with developmental milestones
improved NPVs (Figure 3C). This suggests that PPVs
from genetic variants overlap with those from developmen-
tal milestones, whereas their NPV—specifically from
polygenic scores—is more orthogonal to developmental
milestones.

Limitations
This study has some limitations. First, retrospective evalua-
tion of milestones may be susceptible to recall biases or tele-
scoping effects, where developmental milestones can be
remembered by caregivers as more recent than they
occurred.55 We found, however, no evidence of such effects.
Such parental report mirrors current practices, where devel-
opmental history is gathered retrospectively by clinicians.
Moreover, retrospective motor milestones have previously
been shown to be reliable as compared to prospective
inquiry.65 Second, models were trained and cross-validated
on parent reports of a clinical diagnosis of ID in the SPARK
cohort, and their out-of-sample validity were examined on
IQ scores less than 70 in the SSC and MSSNG cohorts.
Although these approaches differ, the consistency of results
across datasets further highlights the generalizability of the
models. Third, participation bias66 may have led to an over-
representation of individuals without ID, including possibly
those individuals who are carriers of variants in known
autism/ID genes, because significant ID may exclude some
individuals from an autism diagnosis and/or participation in
research.67 This could reduce the predictive performance of
models for predicting ID. Indeed, it was previously shown
that in the SPARK cohort, more than 25% of autistic indi-
viduals carrying de novo LOF variants in a set of autism-
associated genes had an IQ in the typical range.24 Fourth,
due to the current underrepresentation of diverse ancestries
in genomics research, it is likely that the models would
underperform in diverse ancestries.68

Conclusions
This prognostic study highlights the feasibility of using
predictive models to assist clinicians in their assessment
of children referred for autism. Models can provide families
with probability estimates for different developmental trajec-
tories and the corresponding levels of uncertainty tied to the
interpretation of developmental milestones and genetic
findings in the context of autism.
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